http://www.sharifulalam.com 2022-06-08 11:31 來源:科工網
工業大數據應用將帶來工業企業創新和變革的新時代。通過互聯網、移動物聯網等帶來的低成本感知、高速移動連接、分布式計算和高級分析,信息技術和全球工業系統正在深入融合,給全球工業帶來深刻的變革,創新企業的研發、生產、運營、營銷和管理方式。這些創新不同行業的工業企業帶來了更快的速度、更高的效率和更高的洞察力。工業大數據的典型應用包括產品創新、產品故障診斷與預測、工業生產線物聯網分析、工業企業供應鏈優化和產品精準營銷等諸多方面。本文我們講就工業大數據在制造企業的應用場景進行逐一梳理。
一、加速產品創新
客戶與工業企業之間的交互和交易行為將產生大量數據,挖掘和分析這些客戶動態數據,能夠幫助客戶參與到產品的需求分析和產品設計等創新活動中,為產品創新作出貢獻。福特公司是這方面的表率,他們將大數據技術應用到了福特福克斯電動車的產品創新和優化中,這款車成為了一款名副其實的“大數據電動車”。第一代福特福克斯電動車在駕駛和停車時產生大量數據。在行駛中,司機持續地更新車輛的加速度、剎車、電池充電和位置信息。這對于司機很有用,但數據也傳回福特工程師那里,以了解客戶的駕駛習慣,包括如何、何時以及何處充電。即使車輛處于靜止狀態,它也會持續將車輛胎壓和電池系統的數據傳送給最近的智能電話。
這種以客戶為中心的大數據應用場景具有多方面的好處,因為大數據實現了寶貴的新型產品創新和協作方式。司機獲得有用的最新信息,而位于底特律的工程師匯總關于駕駛行為的信息,以了解客戶,制訂產品改進計劃,并實施新產品創新。而且,電力公司和其他第三方供應商也可以分析數百萬英里的駕駛數據,以決定在何處建立新的充電站,以及如何防止脆弱的電網超負荷運轉。
二、設備故障分析及預測
在制造業生產線上,工業生產設備都會受到持續的振動和沖擊,這導致設備材料和零件的磨損老化,從而導致工業設備容易產生故障,而當人們意識到故障時,可能已經產生了很多不良品,甚至整個工業設備已經奔潰停機,從而造成巨大的損失。
如果能在故障發生之前進行故障預測,提前維修更換即將出現問題的零部件,這樣就可以提高工業設備的壽命以及避免某個設備突然出現故障對整個工業生產帶來嚴重的影響。隨著工業4.0的到來,智能工廠的工業設備都配上了各種感應器,采集其振動、溫度、電流、電壓等數據顯得輕而易舉,通過分析這些實時的傳感數據,對工業設備進行故障預測將是一種行之有效的措施。
因此設備故障預測方案成為了制造行業所青睞的解決方案,其具備的核心功能有:
三、工業物聯網生產線的大數據應用
現代化工業制造生產線安裝有數以千計的小型傳感器,來探測溫度、壓力、熱能、振動和噪聲。因為每隔幾秒就收集一次數據,利用這些數據可以實現很多形式的分析,包括設備診斷、用電量分析、能耗分析、質量事故分析(包括違反生產規定、零部件故障)等。
首先,在生產工藝改進方面,在生產過程中使用這些大數據,就能分析整個生產流程,了解每個環節是如何執行的。一旦有某個流程偏離了標準工藝,就會產生一個報警信號,能更快速地發現錯誤或者瓶頸所在,也就能更容易解決問題。利用大數據技術,還可以對工業產品的生產過程建立虛擬模型,仿真并優化生產流程,當所有流程和績效數據都能在系統中重建時,這種透明度將有助于制造商改進其生產流程。再如,在能耗分析方面,在設備生產過程中利用傳感器集中監控所有的生產流程,能夠發現能耗的異常或峰值情形,由此便可在生產過程中優化能源的消耗,對所有流程進行分析將會大大降低能耗。
四、產品銷售預測與需求管理
近年來,保險業加速了數字化進程,大數據與保險營銷深度融合,成為現代化保險營銷的重要武器。慧都大數據助力保險行業精準營銷,并成功幫助中意人壽保險有限公司更好地服務客戶和發揮忠誠客戶,提高銷售效率及客戶復購率。
五、工業供應鏈的分析與優化
當前,大數據分析已經是很多電子商務企業提升供應鏈競爭力的重要手段。例如,電子商務企業京東商城,通過大數據提前分析和預測各地商品需求量,從而提高配送和倉儲的效能,保證了次日貨到的客戶體驗。RFID等產品電子標識技術、物聯網技術以及移動互聯網技術能幫助工業企業獲得完整的產品供應鏈的大數據,利用這些數據進行分析,將帶來倉儲、配送、銷售效率的大幅提升和成本的大幅下降。
六、生產計劃與排程
制造業面對多品種小批量的生產模式,數據的精細化自動及時方便的采集(MES/DCS)及多變性導致數據劇烈增大,再加上十幾年的信息化的歷史數據,對于需要快速響應的APS來說,是一個巨大的挑戰。大數據可以給予我們更詳細的數據信息,發現歷史預測與實際的偏差概率,考慮產能約束、人員技能約束、物料可用約束、工裝模具約束,通過智能的優化算法,制定預計劃排產,并監控計劃與現場實際的偏差,動態的調整計劃排產。幫我們規避“畫像”的缺陷,直接將群體特征直接強加給個體(工作中心數據直接改變為具體一個設備、人員、模具等數據)。通過數據的關聯分析并監控它,我們就能計劃未來。
七、生產質量分析與預測
在工業生產中,設備失效、人員疏忽、參數異常、原材料差異、環境波動等因素而導致質量偏離,引起質量等級的缺陷和損失非常巨大。工藝流程復雜的大型制造業,如鋼鐵、汽車、電子、服裝等行業,信息數據孤島凸顯,導致質量問題頻發,尤其需要“及時發現和預測異常,迅速控制和分析質量異常的原因,進行生產過程改進,穩定生產過程,減少產品質量波動”。
生產質量分析,從工廠訂單下單-訂單生產-流入市場, 針對整個生產鏈進行全面的質量分析。其中,打通質量和人、機、料、法、環等數據,各生產數據環環相扣,聚焦質量管理的全量數據分析,幫助企業快速探索缺陷根本原因。